J

AICIS

COMMUNICATIONS

Published on Web

Activation of Arene C —H Bonds by a

05/21/2002

Cationic Hafnium Silyl Complex

Possessing an a-Agostic Si —H Interaction

Aaron D. Sadow and T. Don Tilley*
Department of Chemistry, Umrsity of California, Berkeley, Berkeley, California 94720-1460

Received February 14, 2002

o-Bond metathesis via four-center transition states is a funda-
mental mechanism for the cleavage of-B bonds!™ Such
reactions are associated with highly electrophifiodf "d® transition
metal complexes possessing reactive Wor M—C o-bonds, which
can activate hydrocarbons such as methamel benzené Early
transition metal and f-metal silyl complexes have been observed
to react with the StH bonds of hydrosilanes via a related
mechanism which is the basis for the catalytic dehydropolymeri-
zation of silanes to polysilanés-However, catalytic hydrocarbon
functionalizations via ther-bond metathesis of unactivated-&
bonds have not been demonstraied. likely limitation in the

(57 Hz) andvsiy-stretching frequency (1414 crh vsip = 1015
cm™1) for 2 suggest a significant weakening of the-$i bond.

The gas-phase structure of £{iSiH3™ was calculated using DFT
methods? The energy-minimized structure possesses a strong
interaction between an SH bond and the Hf center, and the
calculated St-H stretching frequency (1475 cr) is close to the
experimentally observed value.

Previously reported complexes with agostie-8ibonds exhibit
spectroscopic features which are consistent with those observed
for 2. Coordination of g-Si—H bond to the 8 centers in CgZr-
[N(SiHMe,)'Bu]X (X = H, halide) results in upfieldH NMR shifts

development of such catalytic cycles is the apparent restriction thatfor the silicon hydride at 1.232.94 ppm, lowJsy coupling

carbon cannot adopt th&-position of a four-centered transition
state’

A potential catalytic cycle for the functionalization of hydro-
carbons viao-bond metathesis involves the dehydrogenative
coupling of C-H and Si-H bonds to produce a -€Si-bonded

constants of 113135 Hz, and reduced values for thg.-stretching
frequency (19121998 cn1?).13 Similarly, MeSi(17>-CoHs-2-Me),Y-
[«*>-N(SiHMey)2], exhibits a'H NMR shift of 2.97 ppm, aJsin
value of 142 Hz, and asjy-stretching frequency of 1804 crh4
These comparisons suggest a strong donation of electron density

product. This process could involve various fundamental steps, 0nefrom the Si-H bond to the electrophilic hafnium centerafHarrod

of which would be the activation of a-€H bond by a 8 M—Si
bond® However, this transformation requires more reactive $i
o-bonds, as known examples do not react directly wittHbonds.
A possible strategy for the generation of more reacti¥éd-Si

bonds is suggested by recent results which show that cationic

hafnocene alkyl and hydride complexes are highly reactive in
o-bond metathesis reactioPslere we describe a reactive cationic
silyl complex that possesses aragostic S-H bond. The Hf-Si
bond of this complex reacts with the—E& bonds of arenes,
apparently by a concerted;bond metathesis process.

The hafnium silyl complex Gif(SiHMes)Me (1, Mes= 2,4,6-
trimethylphenyl) was readily prepared by the reaction of-Cp
HfMeCl with (THF), sLiSiHMes,;!Cin diethyl ether at-78 °C. The
295i NMR spectrum ofl contains a singlet at 8.24 ppm. The low
1siy coupling constant (145 Hz) andSiH)-stretching frequency
(2077 cnr?) are consistent with bonding of theSiHMes group
to an electropositive elemefft10

Addition of B(CsFs)3 to a benzenels solution of1 quantitatively
produces a dark red solution of the zwitterionic complexHp
(7?-SiHMes)(u-Me)B(CsFs)s (2), which reacts with the solvent
(vide infra) at room temperature. However, this complex is stable
for >8 h below —40 °C in tolueneds. Various 1B NMR
experiments established the presence of -aCBl; bond, and
significant ion-pairing ir2 (see Supporting InformatioA).The most
interesting feature d is the agostic StH group. The SiH hydrogen
gives rise to a highly upfield-shifted resonance at 1.80 ppm (toluene-
dg, —47 °C). A TH—2%Si HMQC experiment revealed coupling
between this SiH resonance and the surprisingly downfield-shifted
29Si NMR resonance at 158 ppm. The I8dy coupling constant
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has isolated and spectroscopically characterized dimeric, dicationic
zirconocene hydridosilyl complexes formulated as'pfZpu-H)-
(SIHR)?* (R = Ph, CHPh; Cp = Cp, Cp*, GHsMe), which do

not possess ZH—Si interactions®

The presence of the-agostic SiH-interaction suggests that the
Hf—Si bond might be unusually reactive toward cleavage reactions
that pass through four-center, electrocyclic transition states, since
a related effect has been proposed for transition states of alkene
insertions into M-C bonds'® The participation of arx-agostic
element-hydrogen bond in-bond metathesis has not been docu-
mented experimentally, but several computational studies describe
such an effect® In fact, at room temperature in benzethg-
compound?2 rapidly converts @, = 54 min) to CpHf(Ph-ds)(u-
Me)B(GsFs)s (3-0s), with elimination of MesSiHD (identified by
its characteristic SiH triplet resonance in thé NMR spectrum,
with 2J4p = 3.6 Hz). The characterization 8fds was aided by the
independent preparation & via reaction of CgHfPhMe with
B(CsFs)s (Scheme 1).

In neat tolueneads, 2 reacts with the solvent (over ca. 2.5 h at
room temperature) to give all of the possible products efbond
activation, CpHf(o-tolyl-d7)(u-Me)B(CsFs)3 (4-d7), CpHf(p-tolyl-
d7)(u-Me)B(CsFs)s (5-d7) (together, 45%), Cgf(m-tolyl-d7)(u-
Me)B(CsFs); (6-d7, 32%), and CgHf(benzyl-d;)(u-Me)B(CsFs)s (7-

d;, 23%). The identity of each product was confirmed by its
independent synthesis from the appropriatgHftolyl)Me deriva-
tive.

Kinetic studies of the €H activation of benzene provide
mechanistic insight into the nature of this transformation. For the
reaction of 2 with benzene, linear plots of I8] versus time
established first-order dependence on the hafnium complex. It
proved possible to vary the concentration of benzene by the addition
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of small amounts of hexafluorobenzene (cald3%), demonstrating
first-order dependence in benzene and a rate lalf2}fCsDg] (k
=5.0x 108 M~1s71 13.5°C). A large primary kinetic isotope
effect ku/kp = 6.9(7)] confirmed that benzene is involved in the
rate-determining step. Furthermore, the magnitude of this isotope
effect is consistent with transfer of hydrogen from carbon to silicon
in the B-position of a concerted transition stééeAn Eyring plot
provided activation parameters AH¥ = 19(1) kcal/mol andASf
= —17(3) eu, which imply an ordered transition state.

To investigate the possible role of the MeREg)s~ anion in
the C—H bond activation process, reaction rates were determined
for benzene activations in the presence of 10 and 20 equiv of
[N(CH,Ph)Buw][MeB(CeFs)3]. These rates were identical to those

benzene in a net process similar to that of Scheme 1, it does so via
oxidative addition of a €H bond followed by reductive elimination

of a silane?? The unusual reactivity observed f@r constitutes
further evidence that cation-like derivatives &f ebmplexes are
more reactive than analogous neutral species towatwbnd
metathesi8. Perhaps more importantly, the observation of KC
bond activations by a%M—Si bond should expand the scope of
strategies for catalytic hydrocarbon functionalization. We are
currently pursuing the incorporation of this step into catalytic cycles.
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Supporting Information Available: Procedures for the synthesis
and characterization of new complexes, experimental details for the
kinetics runs, and representative kinetics data (PDF). This material is
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